
V11 copy(3

(
Lfl

The Artificial Intelligence
and Psychology Project

DTIC
ELECTE

Departments of AUG23 00

Computer Science and Psychology
Carnegie Mellon University ev
Learning Research and Development Center
University of Pittsburgh

Approved for public release: distribution unlimited.

Rule Representations in a Connectionist Chunker
Technical Report AlP - 115

David S. Touretzky, Gillette Elvgren III

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Department of Unguistics
University of Pittsburgh
Pittsburgh, PA 15260

March, 1990

DT1C
G23 1900 U8

This research was supported by the Computer Sciences Division, Office of Naval Research, under
contract number N00014-86-K-0678. Reproduction in whole or part is permitted for any purpose of the
United States Government. Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE

Ia. REPORT ECURITYCLASSIICATION lb. RESTRICTIVE MARKINGS
Unclssifed

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIlCAT IOOWNGRAING SCHEDULE Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AlP - 115

68. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Carnegie Mellon University (If applicable) Computer Sciences Division

Office of Naval Research (Code 1133)

6c. ADDRESS (City, Stare, and ZIPCode) 7b. ADDRESS (City, State, and ZlP Code)

Department of Psychology 800 N. Quincy Street
Pittsburgh, PA 15213 Arlington, VA 22217-5000

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) N00014-86-K-0678

Same as Monitoring Organizatio

k. ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS p40005ub201 7-4-86
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

N/A NIA N/A N/A

II TITLE (include Security Classification)

Rule Representation in a Connectionist Chunker ro

12 PERSONAL AUTHOR(S)
Touretzky, David S., Elvgren III, Gillette

13a. TYPE OF REPORT 1b TIME COVERED 14 DATE OF REPORTS. PAGE COUNT

Technical FROM Ll TOl 4 1990, March 8 C
16 SUPPLEMENTARY NOTATION 8W-]Wil apper.i.... To9ppro

Wll appear in D.S. TouretzRy . Advances in Neural Processing Systems 2, collected paper

of the '89 IEEE Conf. on Neural Info. Processing Systs., Natural & Synthetic, Denver, CO, 11, 9

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse of necessary and identify by block number)
FIELD GROUP SUB-GROUP z4"k i,')rule learning; connectionist architectures;

sequence manipulation!JIr,,/i: '" /// <- "/ .

19. ABSTRACT (Continuo on reverse if necessary and identify by block number)

We pree~ht two connectionist architecturesAfor chunking of symbolic rewrite rules.
One uses backpropagation learning, the other competitive learning. Although they

were developed for chunking the same sorts of rules, the two differ in their represent-

ational abilities and learning behaviors. '-

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

0"UNCLASSIFIED/UNLIMITED (N SAME AS RPT, 0 OTIC USERS
22* NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

Dr. Alan L. Meyrowitz (202) 696-4302 N00014

DO FORM 1473, 4 MAR S3 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

Unclassified

f.

Rule Representations in a Connectionist Chunker

David S. Touretzky Gillette ElvgrenIII
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT

We present two connectionist architectures for chunking of symbolic
rewrite rules. One uses backpropagation learning, the other competitive
learning. Although they were developed for chunking the same sorts
of rules, the two differ in their representational abilities and learning
behaviors.

I INTRODUCTION
Chunking is a process for generating, from a sequence of if-then rules, a more complex
rule that accomplishes the same task in a single step. It has been used to explain incre-
mental human performance improvement in a wide variety of cognitive, perceptual, and
motor tasks (Newell, 1987). The SOAR production system (Laird, Newell, & Rosen-
bloom, 1987) is a classical Al computer program that implements a "unified theory of
cognition" based on chunking.

SOAR's version of chunking is a symbolic process that examines the working memory
trace of rules contributing to the chunk. In this paper we present two connectionist
rule-following architectures that generate chunks a different way: they use incremental
learning procedures to infer the environment in which the chunk should fire. The first
connectionist architecture uses backpropagation learning, and has been described pre-
viously in (Touretzky, 1989a). The second architecture uses competitive learning. It
exhibits more robust behavior than the previous one, at the cost of some limitations on
the types of rules it can learn.

The knowledge to be chunked consists of context-sensitive rewrite rules on strings. For
example, given the two rules

Accession For

NTIS GRA&I
DTIC TAP 0
Unannounced El
Justiflcat ion

By

Distribution/
Availability Codes

Avail and/or

Dist Special-i- O.

RI: D- B / E "change D to B when followed by E"
R2: A- C / B "change A to C when followed by B"

the model would go through the following derivation: ADE - (Rule RI) ABE -. (Rule
R2) CBE. Rule RI's firing is what enables rule R2 to fire. The model detects this and
formulates a chunked rule (Rl-R2) that can accomplish the same task in a single step:

RI-R2: AD - CB / - E

Once this chunk becomes active, the derivation will be handled in a single step, this way:
ADE -- (Chunk Rl-R2) CBE. The chunk can also contribute to the formation of larger
chunks.

2 CHUNKING VIA BACKPROPAGATION

Our first experiment, a three-layer backpropagation chunker, is shown in Figure 1. The
input layer is a string buffer into which symbols are shifted one at a time, from the right.
The output layer is a "change buffer" that describes changes to be made to the sting.
The changes supported are deletion of a segment, mutation of a segment, and insertion
of a new segment. Combinations of these changes are also permitted.

Rules are implemented by hidden layer units that read the input buffer and write changes
(via their a connections) into the change buffer. Then separate circuitry, not shown in
the figure, applies the specified changes to the input string to update the state of the input
buffer. The details of this string manipulation circuitry are given in (Touretzky, 1989b;
Touretzky & Wheeler, 1990).

We will now go through the ADE derivation in detail. The model starts with an empty
input buffer and two rules: RI and R2. 1 After shifting the symbol A into the input buffer,
no rule fires-the change buffer is all zeros. After shifting in the D, the input buffer
contains AD, and again no rule fires. After shifting in the E the input buffer contains
ADE. and rule RI fires, writing a request in the change buffer to mutate input segment 2
(counting from the right edge of the buffer) to a B. The input buffer and change buffer
states are saved in temporary buffers, and the string manipulation circuitry derives a new
input buffer state, ABE. This now causes rule R2 to fire.2 It writes a request into the
change buffer to mutate segment 3 to a C. Since it was Rl's firing that triggered R2,
the conditions exist for chunk formation. The model combines Rl's requested change
with that of R2, placing the result in the "chunked change buffer" shown on the right in
Figure 1. Backpropagation is used to teach the hidden layer that when it sees the input
buffer pattern that triggered RI (ADE in this case) it should produce via its 3 connections
the combined change pattern shown in the chunked change buffer.

The model's training is "self-supervised:" its own behavior (its history of rule firings)
is the source of the chunks it acquires. It is therefore important that the chunking

IThe initial rule set is installed by a external teacher using bsckpropagaim.2Now that RI applies to positions 1 and 2 of the buffer (counting from the right edge), while R2 applies to
position 2 and 3. Rules am represented in a position-independent marner, allowing them to apply anywhere
in the buffer that their envirnmeit is satisfied. The medhanism for achieving this is explained in (Touretzky,
l989a).

-- 2 --

2m m m m m mm m m m lm m m m

Change Buffer: Chunked Change:
cur: [nge =,,g.3to'C"] change sa. 2 to 'Band
prey: changesag.2to'Br] change seg. 3 to'C" I

Rule

Module

next f B E

cur: ZI ZIIEEll
pre: A 0 E

Figure 1: Architecture of the backpropagation chunker.

process not introduce any behavioral erros during the intermediate stages of learning,
since no external teacher is present to force the model back on track should its rule
representations become corrupted. The original rules are represented in the a connections
and the chunked rules are traired using the 3 connections, but the two rule sets share the
same hidden units and input connections, so interference can indeed occur. The model
must actively preserve its a rules by continuous rehearsal: after each input presentation,
backpropagation learning on a contrast-enhanced version of the a change pattern is used
to counteract any interference caused by training on the i patterns. Eventually, when the
0 weights have been learned correctly, they can replace the a weights.

The parameters of the model were adjusted so that the initial rules had a distributed
representation in the hidden layer, i.e., several units were responsible for implementing
each rule. Analysis of the hidden layer representations after chunking revealed that the
model had split off some of the RI units to represent the R1-R2 chunk; the remainder
were used to maintain the original RI rule.

The primary flaw of this model is fragility. Constant rehearsal of the original rule set, and
low learning rates, are required to prevent the a rules from being corrupted before the 0
rules have been completely learned. Furthermore, it is difficult to form long rule chains,
because each chunk further splits up the hidden unit population. Repeated splitting and
retraining of hidden units proved difficult, but the model did manage to learn an RI-R2-
R3 chunk that supersedes the RI-R2 chunk, so that ADE mutates directly to CFE. The
third rule was:

R3: B - F / C - E "change B to F when between C and E"

-3-

Output Change Pattern

Comne

Ruol Uifts

Input String kBuffer

Input Change Pattern
(Training Only)

Figure 2: Architecture of the competitive learning chunker.

3 CHUNKING VIA COMPETITIVE LEARNING
Our second chunker, shown in Figure 2, minimizes interference between rules by using
competitive learning to assign each rule a dedicated unit. As in the previous case, the
model is taught its inifial rules by showing it input buffer states and desired change buffer
states. Chunks are then formed by running strings through the input buffer and watching
for pairs of rules that fire sequentially. The model recruits new units for the chunks
and teaches them to produce the new change buffer patterns (formed by composing the
changes of the two original rules) in appropriate environments.

A number of technical problems had to be resolved in order to make this scheme work.
First. we want to assign a separate unit to each rule, but not to each training example;
otherwise the model will use too many units and not generalize well. Second, the
encoding for letters we chose (see Table 1) is based on a Cartesian product, and so input
patterns are highly overlapping and close together in Hamming space. This makes the
job of the competitive learning algorithm more difficult. Third, there must be some way
for chunks to take priority over the component rules from which they were formed, so
that an input sequence like ADE fires the chunk Rl-R2 rather than the original rule Rl.
As we race through the operation of the chunker we will describe our solutions to these
problems.

Rule units in the competitive layer are in one of three states: inacdve (waiting to be
recruited), plastic (currently undergoing learning), and active (weights finalized; ready to
compete and fire.) They also contain a simple integrator (a counter) that is used to move
them from the plastic to the active state. Initially all units are inactive and the counter

-4-

Table 1: Input code for both chunking models.

A 1 0 1 0 0
B 1 0 0 1 0
C 1 0 0 0 1

D 0 1 1 0 0
E 0 1 0 1 0
F 0 1 0 0 1

is zero. As in any competitive learning scheme, the rule units' input weights are kept
normalized to unit vectors (Rumelhart & Zipser, 1986).

When the teacher presents a novel instance, we must determine if there is already some
partially-trained rule unit whose weights should be shaped by this instance. Due to our
choice of input code, it is not possible to reliably assign raining instances to rule units
based solely on the input pattern, because "similar" inputs (close in Hamming space)
may invoke entirely different rules. Our solution is to use the desired change pattern as
the primary index for selecting a pool of plastic rule units; the input buffer pattern is
then used as a secondary cue to select the most strongly activated unit from this pool.

Let's consider what happens with the training example DE -. BE. The desired change
pattern "mutate segment 2 to a B" is fed to the competitive layer, and the network looks
for plastic rule units whose change patterns exactly match the desired pattern.3 If no such
unit is found, one is allocated from the inactive pool, its status is changed to "plastic,"
its input buffer weights are set to match the pattern in the input buffer, and its change
pattern input and and change pattern output weights are set according to the desired
change pattern.

Otherwise, if a pool of suitable plastic units already exists, the input pattern DE is
presented to the competitive layer and the selected plsatic units compete to see which
most closely matches the input. The winning unit's input buffer weights are then adjusted
by competitive learning to move the weight vector slightly closer to this input buffer
vector. The unit's counter is also bumped.

Several presentations are normally required before a rule unit's input weights settle into
their correct values, since the unit must determine from experience which input bit values
are significant and which should be ignored. For example, rule S I in Table 2 (the asterisk
indicates a wildcard) can be learned from the training instances ACF and ADF, since as
Table 1 shows, the letters C and D in the second segment have no bits in common.
Therefore the learning algorithm will concentrate virtually all of the weight vector's
magnitude in the connections that specify "A" as the first segment and "F" as the third.

Each time a rule unit's weights are adjusted by competitive learning, its counter is in-
3 Mw ustits' thesos am raised so that they can only become active if their weight vectors match the input

chanSe bfer vectr exactly.

55

cremented. When the counter reaches a suitable value (currently 25), the unit switches
from the plastic to the active state. It is now ready to compete with other units for the
right to fire; its weights will not change further.

We now consider the formation of the model's first chunk. Assume that rules RI and
R2 have been acquired successfully. The model is trained by running random strings
through the input buffer and looking for sequences of rule firings. Suppose the model is
presented with the input string BFDADE. RI fires, producing BFDABE; this then causes
R2 to fire, producing BFDCBE. The model proceeds to form a chunk. The combined
change pattern specifies that the penultimate segment should be mutated to "B," and the
antepenultimate to "C." Since no plastic rule unit's change pattern weights match this
change, a fresh unit is allocated and its change buffer weights are set to reproduce this
pattern. The unit's input weights are set to detect the pattern BFDADE.

After several more examples of the R1-R2 firing sequence, the competitive learning
algorithm will discover that the first thre input buffer positions can hold anything at all.
but the last three always hold ADE. Hence the weight vector will be concentrated on the
last three positions. When its counter reaches a value of 25, the rule unit will switch to
the active state.
Now consider the next time an input ending in ADE is presented. The network is in
performance mode now, so there is nothing in the input change buffer, the model is
looking only at the input string buffer. The RI unit will be fully satisfied by the input;
its normalized weight vector concentrates on just the last two positions, "DE," which
match exactly. The RI-R2 unit will also be fully satisfied; its normalized weight vector
looks for the sequence ADE. The latter unit is the one we want to win the competition.
We achieve this by scaling the activation function of competitive units by an additional
factor. the degree of distributedness of the weight vector. Units that distribute their input
weight over a larger number of connections likely represent complex chunks, and should
therefore have their activation boosted over rules with narrowly focused input vectors.
Once the unit encoding the RI-R2 chunk enters the active state, its more distributed input
weights assure that it will always win over the RI unit for an input like ADE. The R1
unit may still be useful to keep around, though, to handle a case like FDE -. FBE that
does not trigger R2.

Sometimes a new ",Link is learned that covers th samr, length input as the old, e.g.,
chunk Rl-R2-R3 that maps ADE ,-- CFE looks at exactly the same input positions as
chunk Rl-R2. We therefore introduce one additional term into the activation function.
As part of the learning process, active units that contribute to the formation of a new
chunk are given a permanent, very small inhibitory bias. This ensures that RI-R2 will
always lose the competition to RI-R2-R3 once that chunk goes from plastic to active,
even though their weights are distributed to an equal degree.

Another special case that needs to be handled is when the competitive algorithm wrongly
splits a rule between two plastic units in the same pool, e.g., one unit might be assigned
the cases {AB,C}ADE, and the other the cases {D,E,F)ADE. (In other words, one unit
looks for the bit pattern lOxxx in the first position, and the other unit looks for 0lxxx.)

-- 6 -

This is bad because it allows the weights of each unit to be more distributed than they need
to be. To correct the problem, whenever a plastic unit wins a competition our algorithm
makes sure that the nearest runner up is considerably less active than the winner. If its
activation is too high. the runner up is killed. This causes the survivor to readjust its
weights to describe the rule correctly, i.e., it will look for the input pattern ADE. If the
runner up was killed incorrectly (meaning it is really needed for some other rule), it will
be resurrected in response to future examples.

Finally, active units have a decay mechanism that is kept in check by the unit's firing
occasionally. If a unit does not fire for a long time (200 input presentations), its weights
decay to zero and it returns to the inactive state. This way, units representing chunks that
have been superseded will eventually be recycled.

4 DISCUSSION
Each of the two learning architectures has unique advantages. The backpropagation
learner can in principle learn arbitrarily complex rules, such as replacing a letter with
its successor, or reversing a subset of the input string. Its use of a distributed rule
representation allows knowledge of rule RI to participate in the forming of the RI-R2
chunk. However, this representation is also subject to interference effects, and as is often
the case with backprop, learning is slow.

The competitive architecture learns very quickly. It can form a greater number of chunks,
and can handle longer rule chains, since it avoids inteference by assigning a dedicated
unit to each new rule it learns.

Both learners are sensitive to changes in the distribution of input strings; new chunks
can form any time they are needed. Chunks that are no longer useful in the backprop
model will eventually fade away due to non-rehearsal; the hidden units that implement
these chunks will be recruited for other tasks. The competitive chunker uses a separate
decay mechanism to recycle chunks that have been superseded.

This work shows that connectionist techniques can yield novel and interesting solutions
to symbol processing problems. Our models are based on a sequence manipulation ar-
chitecture that uses a symbolic description of the changes to be made (via the change
buffer), but the precise environments in which rules apply are never explicitly repre-
sented. Instead they are induced by the learning algorithm from examples of the models'
own behavior. Such self-supervised learning may play an important role in cognitive
development. Our work shows that it is possible to correctly chunk knowledge even
whena one cannot predict the precise environment in which the chunks should apply.

Acknowledgements

This research was supported by a contract from Hughes Research Laboratories, by the
Office of Naval Research under contract numWi N00014-86-K-0678, and by National
Science Foundation grant EET-8716324. We thank Allen Newell, Deirdre Wheeler, and
Akihiro Hirai for helpful discussions.

-- 7 -

T"'4e 2: Initial rule set for the competitive learning chunker.

SI: A*F - B*F
S2: BD - BF
53: {DE,F}*E - {A.B,C}*A
S4: {BE}B -. CB
S5: {AD}C -- {C,F}C

Table 3: Chunks formed by the competitive learning chunker.

Chunk (Component Rules)

EA*F - CB*F (Sl,S4)
ABD - CBF (SlS2,S4)
AADF - CBFF (S 1,$2,S 1,S4)
BE*E -- CB*A (S3,S4)
DEB -- FEB (54,$5)

References

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987) Soar. An architecture for general
intelligence. Artificial Intelligence 33(1):1-64.

Newell, A. (1987) The 1987 William James Lectures: Unified Theories of Cognition.
Given at Harvard University.

Rumelhart, D E., and Zipser, D. (1986) Feature discovery by competitive learning. In D.
E. Rumelhart and J. L. McClelland (eds.), Parallel Distributed Processing: Explorations
in the Microstructure of Cognition. Cambridge, MA: MIT Press.

Touretzky, D. S. (1989a) Chunking in a connectionist network. Proceedings of the
Eleventh Annual Conference of the Cognitive Science Society, pp. 1-8. Hillsdale, NJ:
Erlbaum.

Touretzky, D. S. (1989b) Towards a connectionist phonology: the "many maps" ap-
proach to sequence manipulation. Proceedings of the Eleventh Annual Conference of the
Cognitive Science Society, pp. 188-195. Hillsdale, NJ: Erlbaum.

Touretzky, D. S., and Wheeler, D. W. (1990) A computational basis for phonology. In D.
S. Touretzky (ed.), Advances in Neural Information Processing Systems 2. San Mateo,
CA: Morgan Kaufmann.

8

